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ABSTRACT

The emergence of next-generation sequencing (NGS)
has revolutionized the way of reaching a genome
sequence, with the promise of potentially provid-
ing a comprehensive characterization of DNA vari-
ations. Nevertheless, detecting somatic mutations
is still a difficult problem, in particular when trying
to identify low abundance mutations, such as sub-
clonal mutations, tumour-derived alterations in body
fluids or somatic mutations from histological nor-
mal tissue. The main challenge is to precisely dis-
tinguish between sequencing artefacts and true mu-
tations, particularly when the latter are so rare they
reach similar abundance levels as artefacts. Here,
we present needlestack, a highly sensitive variant
caller, which directly learns from the data the level
of systematic sequencing errors to accurately call
mutations. Needlestack is based on the idea that
the sequencing error rate can be dynamically esti-
mated from analysing multiple samples together. We

show that the sequencing error rate varies across
alterations, illustrating the need to precisely esti-
mate it. We evaluate the performance of needlestack
for various types of variations, and we show that
needlestack is robust among positions and outper-
forms existing state-of-the-art method for low abun-
dance mutations. Needlestack, along with its source
code is freely available on the GitHub platform: https:
//github.com/IARCbioinfo/needlestack.

INTRODUCTION

Massive parallel sequencing, or next-generation sequenc-
ing (NGS), has revolutionized the manner in which ge-
netic variation can be explored, due to a large increase
in throughput and unprecedented ability to detect low-
abundance variations compared to the traditional Sanger
sequencing, and at a greatly reduced cost per sequenced
base. However, because these new technologies are prone
to errors, identifying genetic variants from NGS data re-
mains a considerable challenge (1). This is particularly true
in heterogeneous samples, where the variant allelic fractions
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(VAF, the ratio of the number of sequencing reads carry-
ing the mutant allele to the total read count) deviate away
from the expectations of a diploid genome (0, 50 or 100% for
the three possible diploid genotypes), until the point where
the mutant alleles make up only a small fraction of the
sequenced reads, approaching the background error rate.
Nevertheless, robustly identifying low VAF sequence vari-
ants in such heterogeneous settings can be highly informa-
tive, for example providing insights into the clonal evolution
of tumours (2), analysing the cell-free DNA in order to iden-
tify tumour-derived molecular footprints (3) or evaluating
somatic mutations in histologically normal material (4).

The error rate of NGS is known to vary along the genome
and even across the different possible base changes at a
given DNA position (5,6). NGS errors originate from many
of the steps in the sequencing process, stemming from the
quality of the template DNA, its subsequent fragmentation,
the library preparation, the base calling or the alignment
step subsequent to the sequencing of raw reads. Some of
these errors have a tendency to reoccur consistently across
samples whereas others have a more unpredictable appear-
ance. Because errors in NGS come from multiple sources,
it becomes highly difficult to distinguish them from real ge-
netic variation (7). Variant identification methods that con-
sider this highly variable error pattern may improve our
ability to robustly detect true sequence variants even when
their abundance is low. Most current algorithms use a prob-
abilistic model on VAF applied independently across sam-
ples to distinguish between sequencing artifacts and true
variations (8), while methods specifically designed to de-
tect low abundance mutation, like shearwaterML (9,10),
propose to benefit from the shared knowledge on errors
across samples, but are limited by the requirement of a prior
threshold on the error rate.

Here, we have explored the approach of using multiple
samples analysed concurrently to develop an error model
for each potential base change. Sequence variants are iden-
tified as outliers relative to this robust error model. This
method, called needlestack, allows the identification of se-
quencing variants in a dynamic manner relative to the vari-
able error pattern found in NGS data, and is particularly
appropriate to call variants that are rare in the sequenced
material. By combining this method with additional labo-
ratory processing for further error correction (11) and very
deep NGS, we are able to robustly identify VAFs well below
1% while maintaining acceptable false discovery rates. We
conducted multiple rigorous performance estimations and
comparisons with methods for both somatic and germline
variant detection. We deployed our pipeline focusing on
efficiency and robustness using the domain-specific lan-
guage (DSL) nextflow (12), and on reproducibility by pro-
viding Docker and Singularity images. Source code is ver-
sioned and freely available on GitHub (https://github.com/
IARCbioinfo/needlestack).

MATERIALS AND METHODS

Needlestack overview

Needlestack estimates for each candidate alteration, i.e.
each pair of position and base change (the three non-
reference nucleotides and each observed insertions and

deletions) the systematic sequencing error rate across a se-
ries of samples, typically more than twenty to ensure a rea-
sonable estimation of this metric. Then, for each sample, it
computes the P-value for the observed reads under the null
hypothesis of this estimated model of errors, and transforms
this P-value into a Phred-scale Q-value reported as a vari-
ant quality score (QVAL) for the candidate mutation. As
such it measures the evidence that the observed mutation is
not explained by the error model, and should therefore be
considered a mutation.

Needlestack takes as input a series of BAM files, and
is based on three main piped processes, the generation of
the mpileup file containing read counts at the target posi-
tions using samtools (13), the reformatting of this file into
readable tabulated file and finally the estimation of the er-
ror model using our R regression script (see below) coupled
with the computations of Q-values (Supplementary Figure
S1). Needlestack is highly parallelizable as input positions
are analysed independently. As an output, needlestack pro-
vides a multi-sample VCF file containing all candidate vari-
ants that obtain a QVAL higher than the input threshold
in at least one sample, general information about the vari-
ant in the INFO field (e.g. error rate estimation, maximum
observed QVAL) and individual information in the GENO-
TYPE field (e.g. QVAL of the sample, coverage of the sam-
ple at the position). Other known systematic biases can be
filtered out by needlestack in order to reduce the amount
of false positive calls: needlestack can filter low quality se-
quenced bases (BQ filter), reads with low mapping quality
(MQ filter) and variants are annotated for strand bias mea-
sures in the VCF file. In addition, if needlestack is launched
providing pairs of tumour and matched normal samples, it
will add a status (i.e. somatic or germline) to each detected
mutation (see Supplementary Methods for details).

The Needlestack algorithm

Let i = 1. . .N be the index of the sample taken from an
aligned sequenced panel of size N, j the genomic posi-
tion considered and k the potential alteration, with k ∈
(A, T, C, G, ins, del), ins and del covering respectively ev-
ery insertion and deletion observed in the data at position j.
Let DPij denote the total number of sequenced reads at po-
sition j for the sample i, AOijk the reads count supporting
alteration k and ejk the corresponding error rate. We model
the sequencing error distribution using a negative binomial
(NB) regression (without intercept):

AOijk∼ NB
(
μijk,σjk

)

with σkj the over-dispersion parameter and μijk =ejk ∗ DPijk
corresponding to the expected number of reads supporting
alteration k across samples with a coverage DPijk. A robust
negative binomial regression method (14) is employed to en-
sure that the outliers from this error model, such as true mu-
tations, are not biasing the regression parameters estimates.
This model is based on a robust weighted maximum like-
lihood estimator (MLE) for the over-dispersion parameter
σjk. We modified the original implementation of this regres-
sion to fit the need of our model here with: (i) a linear link
function, (ii) a zero intercept, as a null coverage will exhibit
a null read count and (iii) an approximation of the bound-
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ing functions to allow the MLE to run efficiently for high
coverage data (see Supplementary Methods).

For each position j and alternative k, we perform this ro-
bust negative binomial regression to estimate parameters ejk
and σkj. We then consider a sample i as carrying a true mu-
tation k at the position j when being an outlier from the
corresponding error model. We calculate for each sample a
P-value for being an outlier using the estimated parameters
that we further transform into q-values using the Benjamini
and Hochberg procedure (15) to account for multiple test-
ing and control the false discovery rate.

Importantly, because true mutations are identified as
the outliers from the error model fitted using a robust
regression, this approach is more suited to detect low-
abundance mutations. Common mutations (for example
germline SNPs with common allele frequencies) will be ob-
served in the error model and therefore not detected as
outliers by needlestack. In practice we found that muta-
tions with a minor allele frequency below 10% can be ac-
curately detected (see below). Additionally, while allowing
over-dispersion, our model assumes that the error rate ejk
is homogeneous across samples for a given alteration. This
means that it should be applied to a homogeneous series of
samples (that is prepared using comparable laboratory tech-
niques and sequencing machines etc.). Importantly other
types of errors that have less tendency to reoccur uniformly
across samples are identified by needlestack as outliers.

Sequencing data for performance evaluation

One hundred and twenty-five cell-free DNA (cfDNA) sam-
ples from healthy donors were used to study the distribu-
tion of error rates estimated by needlestack and to estimate
its accuracy to detect low VAF using in-silico mutations.
We also sequenced 46 cfDNA samples from 18 small-cell
lung cancer (SCLC) patients and 28 squamous-cell carci-
noma (SCC) patients, two cancer types that harbour a high
prevalence of TP53 mutations (respectively 99% (16) and
81% (17)). In order to validate in the tumour the low VAF
mutations identified by needlestack in the cfDNA, we also
sequenced tumour samples for these patients. Each of the
cfDNA samples was sequenced for the TP53 exonic regions
(exons 2–11, which corresponds to 1704 bp with a median
coverage of around 10 000×) using the IonTorrent Proton
technology, in two technical independent duplicates in or-
der to account for potential errors during library prepara-
tion. Details about cfDNA sequencing steps and tumour
sequencing method are provided in the Supplementary Ma-
terial.

Additionally, we performed whole-exome sequencing
(WES) from the blood of 62 samples from an inde-
pendent cohort in order to estimate the performance of
needlestack on germline mutations. As a gold standard,
we used genotypes derived from Illumina SNP array (Il-
lumina 5M beadarray) that were available for 33 of these
62 samples.

Comparison with other variant callers

We used BAMsurgeon software (18) to introduce single
nucleotide variations (SNVs) at varied VAF in the 125

cfDNA samples in TP53 in order to benchmark and com-
pare the method through in-silico simulations. BAMsur-
geon presents the advantage of synthetic benchmarking
methods that allow the simulation of mutations for which
gold standards do not exist to evaluate the performance
(here low VAF, that are in addition challenging to validate),
while maintaining the real data background such as the true
error profiles. We introduced 1000 SNVs at random posi-
tions in the gene in random samples, and we replicated this
process in ten batches. As each sample has been sequenced
twice, we introduced each in-silico mutation in the two tech-
nical duplicates of a sample. We took benefit from the vari-
able coverage among samples and genomic positions to
study the sensitivity of our method down to VAF = 10−4.
For each mutation m, the VAF was simulated using a log-
uniform distribution: VAFm = 10−u with u∼ uniform(0, 4).
Mutations were only introduced at positions where at least
five mutated reads would be observed. This means that a
mutation with a VAF = 10−4 would be introduced only in
positions with a coverage of at least 50 000×. To compare
needlestack with a similar variant caller, we ran Shearwa-
terML (4,10) on the same ten batches (see Supplementary
Methods). ShearwaterML is based on a beta-binomial re-
gression and requires an a-priori threshold t for the error
rate. ShearwaterML excludes each sample having a number
of alternative bases higher than t*coverage, aiming at re-
moving potential true mutations that act as outliers in the
regression to robustly estimate the error rate. To compute
the global performance of both methods, the 10 simulation
batches were merged, and only mutations detected in both
technical duplicates were considered. In-silico simulations
were repeated for 1-bp insertions and deletions (indels) for
needlestack. In this case, the total number of in-silico mu-
tations was reduced to minimize the potential alignment
artefacts created by the introduction of two indels close
together. For that, using the same initial data, 100 inser-
tions and 100 deletions were added again in ten simulations
batches (total of 20 batches).

To estimate the ability of needlestack to detect rare
germline variations, i.e. germline mutations present in a
small proportion of the analysed samples, we used the
62 WES from blood samples. Needlestack variant calling
was performed using our germline recommendations (see
Supplementary Methods). GATK variant calling was per-
formed using HaplotypeCaller best practice workflow (19)
(see Supplementary Methods). From the 3 446 898 bead ar-
ray non-reference genotypes (0/1 or 1/1) distributed over
113 232 positions in the 33 individuals, we selected 20 439
genotypes with a sufficient coverage (see Supplementary
Methods). In a second part, to account for possible bias in
the array, variant calls from both needlestack and GATK
were compared independently of the array data, on a to-
tal of 44 314 972 exonic positions. To compare only rare
germline variants, we removed common variants from each
calling set (bead array, GATK calling and needlestack call-
ing, see Supplementary Methods). Note that while the main
goal of needlestack is to accurately detect low VAF mu-
tations, the comparison with germline calling where VAF
= 50% or 100% aims at evaluating the performance of
needlestack in a very well-studied problem for which a gold-
standard is available.
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Error rate estimation

To estimate the error rate variability across positions, we
computed with needlestack the sequencing error rates from
two data sets of the TP53 gene sequenced with two differ-
ent technologies (on the 62 blood samples and on the 125
cfDNA samples). Error rates were estimated at each posi-
tion of the gene and for each substitution, totalling 1704*3
= 5112 values. We were then interested in estimating the
contribution of each possible nucleotide change on the er-
ror rate. We therefore computed, for each error-rate range e
in [{10−5,10−4};{10−4,10−3};{10−3,10−2};{10−2,10−1}] and
for each possible base change b in [G>T, C>A, . . . , A>C,
T>G]:

probe,b = #ERe,b

#ERe

with #ERe,b being the number of estimated error rates in
the class e observed for a base change b, and #ERe being
the total number of estimated error rates in the class e.

In the case of the Ion Torrent sequencing, we observed
a sufficiently high number of single nucleotide variations
(SNVs) (n = 5112) to also compute the distribution of er-
ror rate depending on the 96 possible SNVs taking into ac-
count the preceding and following bases to evaluate the ef-
fect of the sequence context. Similarly, the high number of
insertions (n = 7662) and deletions (n = 1724) detected al-
lowed us to also compute the distribution of estimated error
rates (i) as a function of the length of the inserted/deleted
sequences; and (ii) as a function of the length of homopoly-
mer regions for the insertion/deletion of one base pair.

cfDNA and matched tumour analysis for validation

Observed deleterious mutations in the TP53 gene of a
cfDNA lung cancer patient are generally expected to be de-
rived from their tumour (but see 20). Therefore we used
the tumour samples as a proxy for validation of the iden-
tified cfDNA mutations. To limit our false discovery rate,
samples that harboured a high number of raw mutations
(>100) in at least one of the two technical replicates were
excluded. This removed four SCC and seven SCLC from the
46 matched samples. We considered only cfDNA mutations
that passed post-calling filters, i.e. a RVSB (Relative Variant
Strand Bias) (20) lower than 0.85, no high-VAF variant (i.e.
a VAF 10 times higher than the candidate mutation) within
5 bp upstream or downstream, and a VAF higher than 10%
if the mutation is found in a low confidence base change
(i.e. where technical duplicates don’t cluster together; see
Supplementary Methods). We independently performed the
needlestack variant calling on the cfDNA samples and the
matched tumour samples.

RESULTS

Sequencing error rates depend on the alteration type

Globally, 95% of the error rates across alterations were es-
timated as lower than 10−2.5 in both sequencing technolo-
gies (Figure 1A). Nevertheless, the error rates varied impor-
tantly across the target sequences and alterations. For the

amplicon-based Ion Torrent sequencing, transitions had 5-
fold higher error rates than transversions (Figure 1A), on
average, although not clearly influenced by the sequence
context when considering the flanking 3′ and 5′ bases (Sup-
plementary Figure S2). For exome-capture sequencing, a
bulk in the distribution of transversion-like errors is ob-
served at an error rate in the order of 10−2.5 (Figure 1A).
When looking at the proportion of different nucleotide sub-
stitutions across multiple ranges of sequencing error rates
(Figure 1B), we observed that in this range (10−2 – 10−3)
the majority of substitutions correspond to G>T transver-
sions, previously reported and suggested to be related to
DNA sonication (21).

As previously reported, we observed a large number of
indels (9389) in the Ion Torrent sequencing data (22). We
found that the error rate is dependent of their length: long
indel (with a size >3 bp) error rates are around 100-fold
lower than 1 bp indel error rate (Supplementary Figure
S3A). As previously reported (22), the error rate also in-
creases with the length of homopolymer region, reaching
1% for repetitions of 4 nucleotides (Supplementary Figure
S3B).

Variant detection limit depends on the error rate

Importantly, errors identified in the previous section are
classified as such by needlestack, and not as potential vari-
ants, even when the error rate is high, as opposed to tra-
ditional variant callers which consider samples individually
and that rely mostly on the VAF (21). Figure 2A illustrates
a position at which needlestack identifies a high error rate
(ejk = 3.8) without reporting any variant, even though al-
ternate reads are observed in individuals VAF’s up to ∼9%.
Figure 2B illustrates a position with a very different esti-
mated error rate (ejk = 10−4) where a putative low VAF vari-
ant is identified. It is also noteworthy that the variant identi-
fied in Figure 2B has a VAF 10 times lower (10−3) than the
error rate estimated in Figure 2A, indicating that the sen-
sitivity to detect a variant is considerably improved at the
site with the lower error rate, highlighting the need to quan-
tify the error rate distributions for each candidate mutation
independently.

Technical replicates reduce low VAF false calls

We noted that the majority of variants detected by
needlestack in the cfDNA of healthy patients harbour a par-
ticularly low VAF, typically under 0.5% (Figure 3A, black
solid line). Importantly, the majority of these variants are
not present in a second library preparation (a technical du-
plicate) of the same sample (Figure 3A, blue lines). Such
variants illustrate an additional type of errors found in NGS
data that do not consistently re-occur in the samples and
that are not validated when sequencing a technical repli-
cate of the sample, for example those introduced by poly-
merase chain reaction (PCR) amplification errors. These
non-systematic artefacts are not expected to be captured by
our error model and should be detected by needlestack as
outliers (see Figure 2C for such an example). Importantly,
we showed that this high number of calls not validated in
a technical replicate of the sample is not dependent on our
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Figure 1. Sequencing error rates estimated by needlestack across the TP53 gene. (A) Distribution of sequencing error rates in log10 scale across the 1704
positions accounting for a total of 5112 values. Results are stratified by type of base change: transition or transversion (x-axis) and by sequencing technology
(IonTorrent Proton amplicon-based data in violet and Illumina exome capture data in yellow). Horizontal black lines correspond to the 5% quantiles of
each of the sequencing error rate distribution. (B) Contribution of each of the 12 possible base changes on the estimated error rate. Error rates are stratified
by ranges ([10–5,10–4];[10–4,10–3];[10–3,10–2];[10–2,10–1], x-axis). Base change contributions are coloured according to DNA strand equivalences (e.g. G to
T and C to A are both coloured in blue).

Figure 2. Needlestack regression plot for three independent genomic alterations. Each dot corresponds to a sequencing library of a sample and the dots
are coloured according to the Q-values attributed by needlestack. Red dots are libraries identified as carrying the mutation by needlestack (their Q-values
are higher than 50). Dotted lines correspond to 99% confidence interval around the estimated error rate. (A) Example of a G to T transversion from
exome-hydrid capture Illumina sequencing where the sequencing error rate is estimated as 3.8 × 10–2 and no variant is detected. (B) Example of a validated
mutation (i.e. found in the two technical replicates of the same sample) with a VAF around 10–3 with a corresponding sequencing error rate estimated
around 10–4. (C) Example of a non-validated mutation with a VAF at 10–4 in the positive library.

method (Figure 3A, blue lines). Subsequently, here, for the
evaluation of needlestack’s ability to detect efficiently low
VAF mutations, we added the condition that variants are
also detected in the technical duplicates to account for this
type of error (Figure 3A, blue line).

Performance evaluation using in-silico simulation of somatic
mutations

From the 10 000 mutations introduced by BAMsurgeon,
needlestack detected 5% of mutations with a VAF < 0.1%,
51.4% of mutations with a VAF between 0.1 and 1%, 99%
of mutations with a VAF between 1% and 10% and 100%
of mutations with a VAF higher than 10%. As expected,
the sensitivity of needlestack is highly dependent on the
sequencing error rate. Indeed, needlestack does not call a
mutation if the sequencing error rate for that alteration is
greater than or in the same range as the VAF of the can-
didate mutation (Figure 4). As an example, needlestack de-
tected 0, 6.5 and 47.8% of SNVs with a VAF of 0.1% at posi-
tions where the sequencing error rate was higher than 0.1%,
between 0.1 and 0.01%, and lower than 0.01%, respectively.

When comparing needlestack and shearwaterML, we found
that globally needlestack sensitivity was higher than that of
ShearwaterML, and, for example, ShearwaterML detected
7.7% of all inserted mutations with a VAF at 10−3 whereas
needlestack detected 16.8% of these mutations. Given t the
shearwaterML a-priori threshold on the sequencing error
rate (Figure 3B, red line) and e the observed sequencing er-
ror rate, we showed that the false positive rate of shearwa-
ter is markedly increased when t > e, whereas needlestack’s
false positive rate is stable across the whole range of error
rates (Figure 3B).

These results show that the key parameters driving the
ability of needlestack to detect a variant are the sequencing
error rate, the depth of sequencing (DP) and the VAF of the
variant. In order to better understand how these parame-
ters influence the sensitivity of needlestack in other possi-
ble sequencing scenarios, we have trained a machine learn-
ing model on the set of the 10 000 introduced point muta-
tions to predict this sensitivity in the entire space of possible
mutations (see Supplementary Methods). The model was
trained with only two key features: the number of mutated
sequencing reads (AO = DP*VAF) and the ratio between
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Figure 3. Needlestack and shearwaterML variant calling false discovery overview from in-silico simultations with BAMsurgeon on 125 duplicated samples
of circulating cell-free DNA from healthy individuals. (A) Cumulative number of detected mutations that were not introduced by BAMsurgeon as a function
of the VAF (in log10 scale) of the mutations, for both methods (needlestack in solid lines and shearwaterML in dotted lines). This number is computed as
the average per library when considering all mutations (black lines) and as the average per sample when considering validated mutations (i.e. found in the
two technical replicates of the same sample blue lines). (B) False positive rate (per alteration) for both needlestack and shearwaterML, depending on the
estimated error rate at the position (in log10 scale). The red line corresponds to the error rate threshold t used for shearwaterML (0.005). ShearwaterML
uses this threshold to remove a-priori true variants, i.e. samples with a VAF>t, to then estimate the error rate.

Figure 4. Performance of needlestack for somatic mutation calling using
simulated data. The sensitivity of needlestack is shown for multiple values
of VAF (in log10 scale, x-axis) of in-silico simulated mutations. A total of
10 × 1000 SNVs were introduced using the BAMsurgeon software, on a
set of 125 samples sequenced at the TP53 gene with the IonTorrent Pro-
ton technology. Needlestack sensitivity was computed independently for
different error rate ranges (e, red, blue and green lines). Black line corre-
sponds to the global sensitivity for all the mutations independently of the
sequencing error rate. Global sensitivity of shearwaterML for the same
data is shown in grey.

the VAF of the mutation and the sequencing error rate. In-
terestingly, the ability of this simple model to predict the
sensitivity of needlestack was extremely high (area under
the curve of the precision-recall curve of 0.998, Supplemen-
tary Figure S4A). We therefore applied it on the whole space
of parameters to evaluate the sensitivity of needlestack. We

observed two main raisons for a lack of sensitivity to detect
a mutation with a given VAF: (i) an insufficient coverage
for this VAF, with a general guideline is that the number of
mutated sequencing reads should be larger or equal than
five (log10(DP*VAF) > 0.7 on Supplementary Figure S4B),
and (ii) an error rate too high for this VAF, with a general
guideline is that the VAF should be larger than three times
the sequencing error rate (log10(VAF/ERR) > 0.5 on Sup-
plementary Figure S4B).

Specificity of needlestack using simulations of NGS reads

The specificity of needlestack for different scenarios was
assessed using simulations of NGS reads that include a
realistic sequencing error model and without adding any
variants (23) (see Supplementary Methods). We explored
four alternative sequencing scenarios based on different av-
erage sequencing depths: (i) 30× mimicking a traditional
WGS case, (ii) 100× mimicking a traditional WES case, (iii)
1000× mimicking a deep targeted sequencing case and (iv)
10 000× mimicking an ultra-deep targeted sequencing case.
We found that the number of false positives by mega-base
(FP/Mb) of needlestack decreases with the increase of the
QVAL threshold, reaching a virtually null value for QVAL>
60 (Supplementary Figure S5). With QVAL = 50 (the de-
fault value for somatic variant calling in needlestack), the
specificity was estimated at 0.0 FP/Mb for the WGS set-
ting, 1.67 FP/Mb for the WES, 0.24 FP/Mb for the deep
targeted sequencing and 0.48 FP/Mb for the ultra-deep se-
quencing. The median VAF of the false positive variants de-
creases with the increase of the average coverage, and was
estimated at 4.7% for the WES scenario, 1.2% for the deep
targeted sequencing scenario and 0.06% for the ultra-deep
sequencing scenario.
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Detection of tumour-derived mutations from cell-free DNA

Next, we tested needlestack’s ability to detect very low VAF
mutations in a biologically relevant setting, i.e. by validat-
ing in the tumour the mutations found in the cfDNA sam-
ple of the same patient. For this we screened cfDNA ex-
tracted from plasma samples from 35 lung cancer patients
where the matched tumour sample was analysed concur-
rently, and considered the concordance between the identi-
fied variants. A total of 22 TP53 mutations from 18 samples
(9 SCLC and 9 SCC) were identified in the cfDNA. A to-
tal of 16/22 (70%) mutations were called in the tumour of
the same patient. All the 12/22 cfDNA mutations consid-
ered as deleterious (i.e. indels, non-synonymous SNVs with
a REVEL score higher than 0.5, stopgain or stoploss vari-
ants) (24) were present in the tumour. cfDNA and tumour
VAF were found to be moderately correlated, which is con-
cordant with previously reported results (25) (Pearson cor-
relation coefficient � equals to 0.59, Supplementary Figure
S6A). Details of the 22 cfDNA mutations and correspond-
ing observations in the tumour matched samples are pro-
vided in Supplementary Table S1. The needlestack plots of
a low VAF cfDNA mutation validated in the tumour are
shown in Supplementary Figure S6B.

Application to germline variant calling

For rare germline variants from 33 whole exomes,
needlestack has a sensitivity of 95.64% to detect non-
reference genotypes when using bead array data as a gold
standard, which is quite similar to the GATK-HC Haplo-
type Caller results (95.48%). GATK-HC and needlestack
variants concordant with the bead array (19 515 of the 20
439 variants) had VAF distributed around 50 and 100%,
as expected for germline variants (Figure 5A). Most of
the few calls that were not validated in the array were also
centred around 50% and found by both variant callers, im-
plying that they certainly contain additional heterozygotes
that the SNP array failed to detect. Finally, the majority
of variants not identified with NGS had no sequencing
reads supporting the alternative allele detected by the
array (841/892 variants), suggesting that these variants
are potentially false positive results from the SNP array
(Figure 5A).

Because SNP arrays are biased toward sites amenable to
the design of Illumina BeadArrays (26), we also undertook
needlestack and GATK germline genotyping of SNVs and
indels calls across 62 exomes. Respectively, 97.3 and 70.3%
of the SNV and indel calls were concordant (Figure 5B and
C) with VAFs around 50%, whereas the genotypes identi-
fied uniquely by one of the two methods tended to have low
VAF. For indel calling, 46% of calls unique to needlestack
and 34% of calls unique to GATK are more than 10 bp long,
compared to only 12% of common calls. This suggests that
discrepancies among the methods can be partially explained
by longer indels that are difficult to align and call. For 66%
of uniquely called indels by GATK-HC, no alternate reads
were present in the BAM file used by needlestack, suggest-
ing divergences in the assembly steps (haplotyper Caller ver-
sus ABRA). Interestingly, for 52% of the SNVs detected by
GATK-HC and not by needlestack, needlestack estimated

an error rate higher than 1%, pointing to possible false pos-
itives in the GATK calls (Supplementary Figure S7).

DISCUSSION

The needlestack method is based on the notion that, as error
rates strongly vary along the genome, their dynamic estima-
tion from multiple samples, for each potential base change
at a given DNA position, may assist in accurately identi-
fying sequence variants. Here, we have demonstrated that,
even within a single gene (TP53), and even if the sequencing
error rate is generally low, it varies importantly across posi-
tions and base changes (Figure 1). Needlestack implements
a robust negative binomial regression for this purpose, and
the ability of the method to identify variants will be depen-
dent upon the error rate at that particular site and for that
base change. By identifying sequence variants as outliers
relative to the error model, needlestack maximizes the sensi-
tivity to detect variants in a dynamic manner relative to the
error rate in that particular setting. As such, low allelic frac-
tion variants are identified from sites with low errors rates,
whereas in settings where error rates are high, needlestack
maintains reasonable false discovery rates (Figures 3 and 4).

We have benchmarked our method using both simulated
and real data from different sequencing platforms. First, we
have tested our method on low VAF mutations using BAM-
surgeon to generate in-silico mutations and have compared
our findings to variants identified by a similar rare variant
orientated algorithm shearwaterML (9,10). We have shown
that our method outperforms shearwaterML for the detec-
tion of mutations with VAF lower than 10−2 and that the
performance of shearwaterML highly depends on the dif-
ference between the error rate e and the error rate a-priori
threshold t (see ‘Materials and Methods’ section for de-
tails). Contrary to shearwaterML, needlestack’s specificity
is not dependent on the sequencing error rate. In addition,
needlestack also considers small indel mutations (smaller
than the length of a short-read sequencing alignment). For
this type of variant, the sensitivity of needlestack is slightly
reduced compared to SNVs (Supplementary Figure S8A
and B). This is potentially due to the increased complex-
ity of the assembly step around indels compared to SNVs.
Moreover, needlestack detects a high number of indels repli-
cated in the two technical duplicates that were not in-silico
introduced (around eight by samples in average), whereas
TP53 is not expected to harbour many indels in healthy pa-
tients. These mutations can be moderated using a filter on
the strand bias, as previously reported (Supplementary Fig-
ure S8C and D) (27). In order to estimate the sensitivity of
needlestack for multiple types of target mutations (defined
by their VAF) and multiple types of sequencing experiments
(defined by the coverage and the error rate), our machine
learning model identified a simple rule of thumb to predict
the ability of needlestack to detect a mutation (VAF*DP > 5
and VAF > 3*ERR). As the sequencing error rate depends
highly on the sequencing technique used and are generally
well characterized, these guideline will help users design-
ing their experiments, in particular choosing the sequencing
depth for the range of VAF they are looking for.

The true specificity of needlestack cannot be achieved
with BAMsurgeon simulations, due to a probably very low
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Figure 5. Germline variant calling comparison between needlestack and GATK-HC across 62 samples. Both distributions of the VAF and Venn diagrams
showing the concordance of called mutations are shown. VAF distributions are coloured according to the Venn diagram. (A) Comparison between both
methods and an Illumina bead array containing gold standard genotypes available for a total of 33 samples. (B and C) Comparison between needlestack
and GATK-HC called mutations without any reference gold standard for both SNVs (B) and indels (C).

presence of true mutations in the cfDNA of healthy patients
that is difficult to determine a priori (20). In order to es-
timate the specificity of needlestack in different sequenc-
ing scenarios, we have generated simulated data that do not
contain any variant for three common sequencing scenar-
ios. We have shown that the false positive rate is directly im-
pacted by the QVAL threshold, and this will help guiding
users in their choice. We have also estimated the validation
rate in the tumour of deleterious cfDNA mutations identi-
fied by needlestack in 35 lung patient cfDNA samples. All
of these 12 mutations were validated in the tumour. We de-
tected additional mutations in the tumours that were not
detected in the cfDNA of the corresponding patients (27
mutations in total). However, this can’t be used to estimate
the sensitivity of needlestack, as several biological factors
have been shown to influence the release of tumour DNA in
the circulation (organ, tumour stage, necrosis, physical ac-
tivity etc.; see (28) for a review). Without knowing a priori
if some tumour DNA was actually present in the circulating
DNA we sequenced, it is impossible to disentangle the ‘bio-
logical sensitivity’ of the cfDNA to accurately represent the
tumour, from the ‘technical sensitivity’ of our variant call-
ing procedure.

Finally, we have benchmarked needlestack on germline
mutations using SNP array data to validate the mutations
detected in WES of 33 individuals, and showed an excellent
concordance when results are compared with both an SNP
array as a gold standard set and calls from GATK Haplo-
typeCaller. This illustrates that needlestack, even if based
on a totally different approach to detect variants, can reach
similar performance to state-of-the-art germline variant
callers. More importantly, we have shown that needlestack
can correct false positive variants called with GATK that
correspond to recurrent errors across samples (Supplemen-
tary Figure S7). Practically, users can also run needlestack
directly using a multi-sample VCF produced by GATK as
an input in order to filter out these errors.

Whilst we have performed some extensive evaluations of
needlestack, it is worth noting that they only provide indi-
rect measures of performance based on in-silico mutations,
NGS reads simulation, comparison to germline calling with
high VAF or biological validation in tumour tissue. Ideally

one would need a series of >50 samples, with very deep (10
000×) WES/WGS data, with a list of very low VAF vali-
dated variants, and a list of genomic position at which the
absence of variants has been biologically confirmed. This
would provide a direct measure of sensitivity and speci-
ficity, but as of today, biologically validating/invalidating
very low VAF variants is both technically challenging and
very expensive, as well as performing very deep sequencing
in a large series of patient at high coverage. There are on-
going efforts to generate such high-quality gold-standards
to evaluate the performance of aligners and variant callers,
but as of today they mostly focus on germline (high VAF)
variants (29).

The needlestack method nevertheless has several lim-
itations. Even though needlestack is extremely sensitive,
it is suited to detect rare mutations rather than common
germline polymorphisms or hotspot mutations, which both
re-occur at the exact same genomic location across multi-
ple samples. Indeed, we observed that our method is not
able to detect a mutation present in more than 20% of the
analysed samples. Having a high number of mutated sam-
ples breaks the assumption of the robust regression model
we use, leading to include mutated samples in the error
model, which in tun prevents the detection of these muta-
tions. Adding an a-priori threshold for the error rate (ex-
tra robust mode––see Supplementary Methods) can par-
tially offset this limitation, but is only applicable to particu-
lar situations for the reasons explained above. More impor-
tantly, the inherent logic of the needlestack approach cor-
rects for errors that have a tendency to reoccur, as such er-
rors that are rarer are identified as outliers in the regression.
For the same reason needlestack should be applied to a ho-
mogeneous series of samples, because batch effect could be
a source of false positives. For large studies in which het-
erogeneity cannot be avoided, we recommend to group and
analyse samples in homogenous series separately. Follow-
ing this, needlestack does not correct for sample-specific ar-
tifacts such as (i) (sample specific) stochastic alignment er-
rors and we recommend to use it in conjunction with an
assembly based re-alignment method (30); (ii) polymerase
errors introduced in PCR amplification step; (iii) complex
errors leading to features like strand bias. Such errors re-
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main a feature in NGS data (Figures 2C and 3A), thus addi-
tional error correction (31,32) and/or validation techniques
are needed. This can be achieved with hard filtering on the
output statistics such as the VAF or the strand bias, but also
with machine-learning-based approaches applied to multi-
ple variant summary statistics when validated data are avail-
able to inform the model. A more elegant solution would
be to directly include some of these bias in the needlestack
model rather than performing post hoc filtering, but this
will require a better modelling of these errors. Here we have
controlled for these errors by undertaking technical dupli-
cate of each sample and conditioning on the requirement
that the variant must be present in each preparation.

Our pipeline is implemented using nextflow (12), to fa-
cilitate its scientific reproducibility but also efficient paral-
lel computations. Needlestack is also provided with Docker
(33) and Singularity (34) containers to avoid installation
of dependencies and produce perfectly reproducible results.
Needlestack is a user-friendly pipeline that can be run in
one command line. In addition, needlestack implements a
power calculation to estimate if the coverage is sufficient
to call a mutation when applied on tumours with matched
normal samples to determine the germline or somatic status
(see Supplementary Methods for details). Using this power
analysis, it can predict the germline or somatic status of a
mutation. This also allows needlestack to flag mutations
with an ‘unknown’ status (when the coverage is too low)
to accurately control the false discovery rate. Source code
is available on GitHub and is versioned using a stable git
branching model. Importantly, this approach is relatively
computationally efficient and parallelizable. This allows er-
ror models to be built even across large target stretches of
DNA, enabling applications at the exome level, genome lev-
els or to most forms of sequencing data. As an example,
needlestack takes around 20 h to analyse 100 WES when
launched on 100 CPUs.

In summary, needlestack uses a robust model of sequenc-
ing errors to accurately identify DNA mutations potentially
in very low abundance. The model takes the advantage of
batch sequencing of multiple samples to precisely estimate
the error rate for each candidate alteration. Needlestack can
be applicable to various types of studies such as cfDNA, his-
tological normal tissue investigation or high-precision tu-
mour subclonality estimation by providing a high sensitiv-
ity for low-allelic fraction mutations.

DATA AVAILABILITY

Needlestack is an open source software and is available
in the GitHub repository (https://github.com/IARCbioinfo/
needlestack). The exome sequencing data presented in
the current publication have been deposited in and are
available from the dbGaP database under dbGaP ac-
cession phs001971.v1.p1. Targeted-sequencing data have
been deposited in the European Genome-phenome Archive
database, which is hosted at the EBI and the CRG, under
accession numbers EGAS00001003984 (SCLC ctDNA),
EGAS00001003985 (SCLC tumours), EGAS00001003987
(SCC ctDNA), EGAS00001003988 (SCC tumors) and
EGAS00001003989 (healthy donors cfDNA).
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Supplementary Data are available at NARGAB Online.
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