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LOST YEARS

Air pollution around the world leads to around 4.5 million deaths
and 120 million years of life lost each year.

LOST ANNUALLY
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@ Since 1970, the UK death rate from India’s air quality has worsened
air pollution has reduced by 30% fastest in the past decade.
through EU legislation.
Pl |n West Africa, desert dust adds China’s air quality started improving
to air pollution. in 2010.

Areas with population data are shown; an average is
assumed for countries without detailed data. enature




Heterogeneity of exposure in European cities: PM2.5 in the
ESCAPE project.
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Total mortality in relation to PM2.5 (Beelen R et al 2014, Effects of long-term exposure to air pollution
on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project.

Lancet. 2014 Mar 1:383(9919):785-95)
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Traffic contributions to the London
Airshed

NOx background: Cars (21.6%), LGVs
(7.1%), HGVs (8.8%), buses (10.6%).

Total traffic contribution: 48.6%.

NOx roadside: Cars (28.3%), LGVs
(11.1%), HGVs (10.1%), buses (30.6%).

Total traffic contribution: 80.1%.

Concentration (ug m®

PM, s background: Cars (2.9%), LGVs
| (1.1%), HGVs (0.9%), buses (0.3%),
b vehicle non-exhaust (5.8%).

I Total traffic contribution: 11.0%.
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=m Elemental Carbon Primary Organic Mass == Secondary Organic Mass (2.9%), HGVs (2.3%), buses (2.2%),
== Nitrates Sulphates Chlorides vehicle non-exhaust (14.7%).

== Water Minerals == [ron Oxide

Total traffic contribution: 29.1%.
== Other Metals == nidentified -=-PM10



Percentage o 24 opatane

Contribution of microenvironment to UFP exposure in The
Netherlands
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Exposome

General Specific

External Exposome External Exposome
Climate Air pollution. Societal
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Sensor tubes/inlets

, fitted to shoulder straps Separate GPS &

accelerometer Bespoke phone
{us_ed for application
validation of (GPS, accelerometer)
data from the
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and batteries ‘
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Silicone wristbands
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O'Connell et al., 2014, Silicone Wristbands as Personal Passive Samplers, ES&T, 48 : 33273335




Detection map of all 92 SVOCs (including 39 PBDEs (Polybrominated diphenyl ethers ), 10
nBFRs, (brominated flame retardants ) 25 OPE (Organophosphate esters) ), and 18 PAHs)
tested in the wristbands collected from France (n = 40) and Italy (n = 31). Wang et al, in

press
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OPAA OPGSH
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Gulliver et al, Environ Res 2017. Boxplots of measured annual average
concentration (% consumption) of OP* and OP%*" by study are



Internal exposome : “OMICS”

Multi-omic Variation
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An example of questions: NO, - a surrogate for traffic
pollutants?

Still no robust basis for setting a value

for NO, through any direct toxic effect.

Does NO, at ambient levels have any
detectable toxicity on the human
lung?

Which aspects/components of
combustion mixtures are responsible

for the adverse health effects
observed in epidemiological studies?

Is NO, able to synergise with other
pollutants e.g. PM/allergen (role as an
effect modifier)?

Precursor of
secondary toxic
products
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Health
endpoint
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* pathways
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Meet-in-the-middle

CVD: One inflammatory protein
(Interleukin-17), and two DNA , OMICsignals
thylation inflammatory Interleukin-17 (proteome)
i ROS/Glutathione/Cytotoxic granules (methylome)

pathways Cytokine signaling (methylome)

(‘ROS/Glutathione/Cytotoxic
granules’ and ‘Cytokine signaling’) ' \
were significantly associated with / \
N
Air

both exposure to air pollution and
the risk of CHD, fulfilling the

‘meet-in-the-middle’ hypothesis. Pollution CHD

Fiorito et al, Environmental
Molecular Mutagenesis, 2017

Results from molecular mediation are consistent with air
pollution impacting on both asthma and CVD via pro-
inflammatory and oxidative stress pathways, albeit different
molecules may be involved in the two groups of diseases.
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Search for MITM pathways

Q

}

Linoleate metabolism for PM2.5 and UFP
Glycerophospholipid metabolism for UFP

|

Laboratory confirmation of
chemical identities within
the MITM pathways

4

Linoleate (m/z=281.2464; RT=7.283)
was confirmed

EPIC

Search for MITM pathways
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Fatty acid activation for PM2.5
Linoleate metabolism for PM2.5
Glycosphingolipid metabolism for UFP
Carnitine shuttle for NO2

|

Laboratory confirmation of
chemical identities within
the MITM pathways

}

Carnitine (m/z=162.1128; RT=0.601)
and Stearoylcarnitine (m/2=428.373;
RT=6.479) were confirmed



Fingerprints of exposure: Adductomics

abwy1hr,g” -_‘FQC.

New technologies may serve the purpose of increasing

sensitivity and specificity in identifying relevant chemicals in
mixtures, low-dose effects and dose-response : adductomics

* Pilot study of smokers and non-smokers
(n=40)

e PISCINA 2 - before and after swimming in
a chlorinated pool (n=120)

* PEM study — air pollution exposure
measured by personal monitors (n=584)

* Oxford Street 2 — before and after 2 hours
spent in a highly polluted street (n=354)

e Lung cancer study — nested case-control of
EPIC cohort (n=400)

Courtesy G Preston and Steve Rappaport
- Untargeted methodology. Data from two
different (complementary) MS-based
platforms. Semi-synthetic control adduct
detected by both groups
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Effects of components in a mixture

Metabolomic signatures of different components of air pollution
(Oxford Street study, left, and TAPAS, right) (Bonferroni significance)
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Mixtures: Transcriptomics

miRNA work in relation to air pollution shows that air pollutants impact several
pathways via miRNA activation that in turn are relevant to the multiorgan toxicity

of air pollution

Pollutant-specific cmiRNAs associated with TRAP exposure. The figure shows the overlap as
well as the specificity of the pollutant-specific cmiRNAs associated with exposure to NO2, UFP,
PM2.5, BC and PM10 of the included subjects in Hyde Park and Oxford Street.Julian Krauskopf

et al, 2018



Low levels of exposure in EXPOsOMICS

PM 10 by cohort (left) and metabolomic signals (right) in Piccoli+ (very high
exposure levels) and in Environage (low exposure levels) Bonferroni

threshold - p = 1.63 x 104
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climate change
mitigation measures
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